STEM CELLS IN HEMATOLOGY Smad7 promotes self-renewal of hematopoietic stem cells
نویسندگان
چکیده
The Smad-signaling pathway downstream of the transforming growth factor– superfamily of ligands is an evolutionarily conserved signaling circuitry with critical functions in a wide variety of biologic processes. To investigate the role of this pathway in the regulation of hematopoietic stem cells (HSCs), we have blocked Smad signaling by retroviral gene transfer of the inhibitory Smad7 to murine HSCs. We report here that the selfrenewal capacity of HSCs is promoted in vivo upon blocking of the entire Smad pathway, as shown by both primary and secondary bone marrow (BM) transplantations. Importantly, HSCs overexpressing Smad7 have an unperturbed differentiation capacity as evidenced by normal contribution to both lymphoid and myeloid cell lineages, suggesting that the Smad pathway regulates self-renewal independently of differentiation. Moreover, phosphorylation of Smads was inhibited in response to ligand stimulation in BM cells, thus verifying impairment of the Smad-signaling cascade in Smad7-overexpressing cells. Taken together, these data reveal an important and previously unappreciated role for the Smad-signaling pathway in the regulation of selfrenewal of HSCs in vivo. (Blood. 2006; 108:4246-4254)
منابع مشابه
Increased mir33 Expression in Expanded Hematopoietic Stem Cells Cultured on Adipose Stem Cells Feeder layer
Bachgroun: Hematopoietic stem cell derived from umbilical cord blood (UCB) has been used for regenerative medicine in hematological abnormalities. MicroRNAs are important regulators of gene expression that control both physiological and pathological processes such as development of tissue and cancer. Some studies have shown that miR-33, has a critical role in control of self-renewal cells. He...
متن کاملSmad7 promotes self-renewal of hematopoietic stem cells.
The Smad-signaling pathway downstream of the transforming growth factor-beta superfamily of ligands is an evolutionarily conserved signaling circuitry with critical functions in a wide variety of biologic processes. To investigate the role of this pathway in the regulation of hematopoietic stem cells (HSCs), we have blocked Smad signaling by retroviral gene transfer of the inhibitory Smad7 to m...
متن کاملInduced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy
Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms. Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...
متن کاملA review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell
Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...
متن کاملSignaling pathways involved in chronic myeloid leukemia pathogenesis: the importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells
Objective(s): Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006